Title	RF PLC Interlock Upgrade			
Project Requestor	Dave Bromberek			
Date	4/17/08			
Group Leader(s)	Ali Nassiri			
Machine or Sector	Nick Sereno/Louis Emery			
Manager				
Category	Obsolescence/Spares			
Content ID*	APS_1271281 Rev. 2 4/17/08 3:50 PM			

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	2009	Duration (Yr)	3

Objectives:

To improve rf system reliability and serviceability.

Benefit:

Improved rf system reliability and serviceability, better accuracy on klystron water temperature and flow metering, simplification of interlock system topology and hardware, including EPICS interface hardware.

		_			1
Risks	of Pro	iect:	See	Note	_

N/A

Consequences of Not Doing Project: See Note ³

Lower system reliability resulting in increased downtime, increased maintenance requirements, lower accuracy on klystron water calorimetric calculations, obsolescence of existing process meters.

Cost/Benefit Analysis: See Note 4

267 process meters (~\$700ea.) will be replaced by the PLC systems. Due to age, the failure rate is increasing yearly resulting in increased downtime. Replacement of all process meters + spares would cost ~\$200k. A PLC based system provides more versatility, reliability and serviceability.

Description:

This project involves replacement of the existing process meter and relay-based interlock systems at the RF5 klystron racks and also the Booster Injection/Extraction cavity and Storage Ring sectors 36-40 cavity racks, with PLC-based interlock systems that will include a local touch-screen operator interface and a direct network interface to EPICS. Included in this upgrade will be replacement of all thermocouples in the klystron water circuits with RTD devices for better long-term stability and accuracy of temperature measurements.

Funding Details

Cost: (\$K)

Use FY08 dollars.

Year	AIP	Contingency
1	34	
2	48 28	
3	28	
4		
5		
6		
7		
8		
9		
Total	110	

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1		0.1			0.2			0.3
2		0.05			0.3			0.35
3		0.05			0.2			0.25
4								0
5								0
6								0
7								0
8								0
9								0

Notes:

¹ **ICMS**. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. *Check Out* the previous version and *Check In* the new version. Be sure to complete the *Document Date* field on the check in screen.

² **Risk Assessment.** Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ **Consequence Assessment.** Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then ____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ **Cost Benefit Analysis.** Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ____ will also result in improved reliability of ____. (If no assessment is appropriate then enter NA.)